Large Size Ferrite Cores for High Power

Summary

Issue date: November 2010
Large Size Ferrite Cores for High Power

Summary

Nowadays, more and more high-frequency circuits are being used in industrial equipment as well as consumer equipment. With the use of higher frequencies, silicon steel sheets have become unsuitable for magnetic material used in transformers. Ferrite, its substitute, delivers reduced core loss at high frequencies and is the optimum material for high-power requirements.

To meet these various demands, we at TDK have employed our ferrite development technologies accumulated over the years and advanced production technologies to offer large, high-quality cores for high-frequency, high-power power supplies.

In the following information, introduce ferrite cores that used PE22, PC40 and PE90 materials having superior magnetic characteristics.

APPLICATIONS

<table>
<thead>
<tr>
<th>High frequency inductive heater</th>
<th>EE320x250x20</th>
</tr>
</thead>
</table>

- Transformer
 - Uninterruptible Power Supply System (UPS)
 - CATV's power supply
 - Photovoltaic power generation
 - Power supply of communications station

- Electrical vehicle
 - PQ78,107

- Automated warehouse, conveyor machine

- Current sensor

- General purpose inverter
 - Air conditioner
 - Fun
 - Pump
 - Printing press
 - Packing machine
 - Machines for food industry
 - Drier
 - Compressor of freezer
 - Textile machine
 - Woodworking machine
 - Medical machine
 - UU79x129x31

- Reactor choke

- Trains
 - UU79x129x31

- All specifications are subject to change without notice.
FEATURES

- Large size ferrite cores developed for reactors and transformers used in high power units.
- Please contact us for machinability of non-standard special forms.

MATERIAL CHARACTERISTICS (Typical)

<table>
<thead>
<tr>
<th>Material</th>
<th>PE22</th>
<th>PC40</th>
<th>PE90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial permeability μ_i [23°C]</td>
<td>1800</td>
<td>2300</td>
<td>2200</td>
</tr>
<tr>
<td>Curie temperature T_c °C</td>
<td>>200</td>
<td>>200</td>
<td>>250</td>
</tr>
<tr>
<td>Saturation magnetic flux density B_s [23°C] mT</td>
<td>510</td>
<td>500</td>
<td>530</td>
</tr>
<tr>
<td>H_s [100°C] mT</td>
<td>410</td>
<td>380</td>
<td>430</td>
</tr>
<tr>
<td>Remanent flux density B_r [23°C] mT</td>
<td>140</td>
<td>125</td>
<td>170</td>
</tr>
<tr>
<td>Coercive force H_c [23°C] A/m</td>
<td>16</td>
<td>15</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Core loss P_{cv}</th>
<th>25kHz, 200mT [90°C] kW/m³</th>
<th>79</th>
<th>64</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100kHz, 200mT [100°C] kW/m³</td>
<td>80</td>
<td>70</td>
<td>68</td>
</tr>
</tbody>
</table>

Electrical resistivity ρ Ω m	3.0	6.5	6.0
Approximate density d_{ap} kg/m³	4.8×10³	4.8×10³	4.9×10³
Thermal expansion coefficient α 1/K	12×10⁻⁶	12×10⁻⁶	12×10⁻⁶
Thermal conductivity κ W/mK	5	5	5
Specific heat C_p J/kg K	600	600	600
Bending strength δ_b N/m²	9×10⁷	9×10⁷	9×10⁷
Young's modulus E N/m²	1.2×10¹¹	1.2×10¹¹	1.2×10¹¹
Magnetostriction λ_s	−0.6×10⁻⁶	−0.6×10⁻⁶	−0.6×10⁻⁶

CORE LOSS vs. TEMPERATURE CHARACTERISTICS

- All specifications are subject to change without notice.
CORE LOSS vs. FREQUENCY CHARACTERISTICS

MATERIAL: PE22

All specifications are subject to change without notice.
MATERIAL: PC40

- All specifications are subject to change without notice.
MATERIAL: PE90

- All specifications are subject to change without notice.
SATURATION MAGNETIC FLUX DENSITY vs. TEMPERATURE CHARACTERISTICS

INITIAL MAGNETIC PERMEABILITY vs. TEMPERATURE CHARACTERISTICS

AMPLITUDE PERMEABILITY vs. SATURATION MAGNETIC FLUX DENSITY CHARACTERISTICS

MAGNETIC PERMEABILITY vs. FREQUENCY CHARACTERISTICS

- All specifications are subject to change without notice.
DIMENSIONAL RESONANCE

Dimensional resonance is a phenomenon which increases loss and decreases magnetic permeability by electromagnetic standing waves when the magnetic field of the core frequency is applied. The phenomenon appears when the maximum dimension of the cross section of the core perpendicular to the magnetic field is the integral multiple of about half of the electromagnetic wavelength λ.

$$\lambda = \frac{C}{f \times \sqrt{\mu_r \times \varepsilon_r}}$$

- C: Electromagnetic wave speed in vacuum (3.0×10^8 m/s)
- μ_r: Relative magnetic permeability
- ε_r: Relative permittivity
- f: Frequency of the applied magnetic field (electromagnetic wave)

As $\mu_r \varepsilon_r$ decreases by inserting into the gap, using the same core enables high frequency wave usage as indicated by the formula above.

As dimensional resonance quickly decreases magnetic permeability, design the actual frequency to avoid dimensional resonance. In the case of possible dimensional resonance, it can be protected against by dividing the core in the magnetic circuit direction and bonding them.

RESONANCE DIMENSION vs. FREQUENCY CHARACTERISTICS

GENERAL PRECAUTIONS WHEN USING FERRITE CORE

- When selecting the material/form of the ferrite core, while considering the margins select from the range in the catalog (product manual) display where factors such as inductance value, maximum saturation flux density, core loss, temperature characteristics, frequency characteristics and Curie temperature are concerned.
- Select material that does not corrode or react in order to avoid insulation failure or a layer short, and also be careful to avoid loose winding of the core or causing damage to the wire.
- Be careful that the equipment and tools you use do not strike the core in order to avoid core cracks.
- Please consider using cases, bobbins or tape for insulation purposes.
- When using cases and bobbins, select those with a heat expansion coefficient as close to that of the ferrite as possible.
- When laying out the case, bobbin, coil and the ferrite core, create clearance between each part in order to prevent any core cracks and to assure insulation.
- Please handle with care, since a ferrite core is susceptible to shock.
- The outward appearance is determined according to the standard of our company.
- Do not place close to strong magnets.
- Be careful not to cause shock by the use of equipment and tools.
- Be careful not to expose to rapid change in temperature, since it is also susceptible to thermal shock.
- Careless handling may hurt your skin, since the corners of the polished surface of the ferrite are very sharp, and in some cases, burrs may have formed on the surface.
- Please be very careful when stacking and handling the containers, since some ferrite cores are heavy, and can cause injury, toppling or back pain.
- Where inner packaging is concerned, please be careful not to damage the core when taking it out from the container since the packing materials used in order to prevent damage during transportation may make it difficult to take out.
- Do not reprocess the ferrite core as it can cause problems, such as injury.